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Summary

The design of a very fast, automatic black-box code for
homogeneous, gas-phase chemical kinetics problems requires
an understanding of the physical and numerical sources of
computational inefficiency. Some major sources reviewed in
this report are stiffness of the governing ordinary differential
equations (ODE’s) and its detection, choice of appropriate
method (i.e., integration algorithm plus stepsize-control
strategy), nonphysical initial conditions, and too frequent
evaluation of thermochemical and kinetic properties. Specific
techniques are recommended (and some advised against) for
improving or overcoming the identified problem areas. It is
argued that, because reactive species increase exponentially
with time during induction, and all species exhibit asymptotic,
exponential decay with time during equilibration, exponential-
fitted integration algorithms are inherently more accurate for
kinetics modeling than classical, polynomial-interpolant
methods for the same computational work. But current codes
using the exponential-fitted method lack the sophisticated
stepsize-control logic of existing black-box ODE solver codes,
such as EPISODE and I.SODE. The ultimate chemical kinetics
code does not exist yet, but the general characteristics of such
a code are becoming apparent.

Introduction

The present work is motivated by the need for reliable and
computationally efficient methods for the numerical modeling
of continuous combustion phenomena in multidimensional
reactive flows.

Prior to about 1970 the literature pertaining to the solution
of homogeneous, gas-phase combustion kinetics batch reaction

equations was concerned with single-point calculations .

associated with the determination of chemical kinetic rate data
by shock tube or flow reactor or with the nozzle performance
of chemical rocket motors (refs. 1 to 4). In both computational
scenarios accuracy was the most important concern in selecting
an integration algorithm. Computational efficiency was of
concern as well, but evolutionary increases in the execution
speed of new computers tended to diminish its importance.
As a result, a number of highly accurate, moderately efficient
computer codes were developed (refs. 5 and 6), and it could
be safely said that the single-point kinetics calculation problem
was solved satisfactorily.

As attention was focused on modeling of reactive flows in
the late 1960’s and early 1970’s, it was found that the single-
point codes were not sufficiently fast, and were unnecessarily
accurate, for practical application to flows with complex
reaction mechanisms on large computational grids (refs. 7 and
8). In particular, whether these flows are being modeled from
a space-discretized Eulerian approach with finite-rate reaction
kinetics treated by operator splitting or from a mass-discretized
Lagrangian approach using the method of fractional steps to
treat the finite-rate chemistry, there is a common need for a
moderately accurate, extremely fast, homogeneous batch
chemistry integrator to give approximate solutions for the
thousands of resulting initial value problems. The same
requirement arises in the single-point, stochastic simulation
of turbulent, inhomogeneous gas-phase continuous-combustion
systems (refs. 9 to 11).

Seeking computationally efficient methods for approximately
solving the stiff, strongly coupled, nonlinear ordinary
differential equations (ODE’s) governing this problem requires
that the actual source of the difficulty be recognized, that is,
whether specific computational problems arise from the
physics of the system or from an inappropriate choice of
numerical methods.

Governing Differential and Algebraic
Equations
The system of ordinary differential equations describing

adiabatic, homogeneous gas-phase chemical reaction at
constant pressure is given by

dO'i

— = fi(or, T) i,k =1,NS D
dt
where
J
fi= —PA1 E (aij—aij> (R —R_) 2)
j=1

where the molar forward and reverse reaction rates per unit

volume R; and R_j, respectively, are given by
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In equations (1) to (4) o; is the mole number of the ith
species (kmol i/kg mixture), NS is the total number of distinct
chemical species, T is the temperature, and p is the mixture
mass density. The «;’s are the stoichiometric Cocfﬁcients of
reactant and product species 7 in the jth reaction («;; and «,
respectively); J is the total number of independent chemical
reactions. The quantitics 4;, A_;, B, B_;, T;, and T_; are
constants in the modified Arrhenius expressions, equations (3)
and (4), for the forward and reverse reaction rates,
respectively.

The mixture mass density p in equations (2) to (4) is
determined by the equation of state for an ideal gas

P
RTo,,

0 (5a)

where P is the absolute pressure, R is the universal gas
constant, and o, is the reciprocal mean molar mass of the gas
mixture, given by

Oy = E g; (Sb)

The net production rate of ith species, f; in equations (2)
to (4), may be expressed as a difference between two positive-
definite terms

f; = Q1 - Di (6)
where
J
Qi = pil 2 <(¥,'jR_j + (Y,,]/R/) (7)
J=1
and
J
D =p" Z (oz,_//Rj + oz,{,'R,»,) (8)
J=1

In equations (6) to (8), Q, and D, represent the gross rates
of production and destruction of the ith species, respectively,
because of the contributions of all the J forward and reverse
reactions in the prescribed mechanism.
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The purpose of this decomposition is to enable factorization
of the ith mole number o; from the destruction term D,

D. = Lo, )

where L;, the loss coefficient for the ith species, is obtained
simply by dividing D; by o;:

(aR, + /R (10)

ut

-~

Li = (pol)‘l
j=1

In this report attention is restricted to constant pressire,
adiabatic chemical reactions. For such problems conservation
of thermal energy is expressed by an algebraic equation of
constant enthalpy as a constraint on equations (1) to (4):

NS
E h,0; = h, = constant (1)
=1

where /1, is the sensible-plus-chemical molar specific enthalpy
of the ith species, and £, is the mass specific enthalpy of the
mixture.

The algebraic equation (11) can be differentiated with respect
to time so that the enthalpy conservation cquation is expressed
as an additional ODE for the temperature:

NS
Y bt

(/T _ i=1
dr NS

(12)

0Cpi

=1

where ¢, is the constant-pressure molar specific heat capacity
of the ith species.

Either equation (11) or (12) can be used in the equation set.
When equation (11) is used, the temperature is caleulated from
the species mole numbers and the initial mixture enthalpy. An
iterative technique is emiployed, and the temperature is adjusted
until equation (11) is satisified. In this method the number of
independent ODE’s is equal to the number NS of distinct
chemical species. The use of equation (12) to solve for the
temperature increases the number of independent ODE’s to
NS + 1. In this method the integrator tracks the solutions for
both the species mole numbers and the temperature.

Statement of the Physical Problem

During the process of modeling a chemically complex
reactive flow field, it is typically necessary to solve thousands
of initial value problems of the following form: given a
prescribed pressure P, an initial temperature T, and a




corresponding initial set of mole numbers ({g;]g, i = 1,NS),
find the resulting temperature and mole numbers at the end
of a prescribed time interval Af.

Figures 1 and 2 illustrate solutions to equations (1) to (12)
for two typical problems (refs. 12 and 13) of stoichiometric
combustion of reactive mixtures following rapid compression
in a shock tube. Three distinct physical and chemical regimes,
commonly denoted as induction, heat release and equilibration,
are apparent.

The induction regime is the period of time immediately
following some form of homogeneous bulk ignition. In the
present examples ignition is due to the passage of a shock wave
through the stoichiometric mixture of fuel and air. During the
induction period concentrations of reactant precursors and
intermediate chain carriers (such as O, OH, H, and CH,)
increase by many orders of magnitude, from very small initial
concentrations to values sufficient to initiate endothermic
reactions. These, in turn, lead to oxidative and thermal
pyrolysis of the hydrocarbon fuel, which produces CO and
H,. In this regime D; (eq. (6)) is small; f; is large and
dominated by Q,. During the early part of the induction
period, the coupling with the energy equation is weak, so that
an essentially isothermal reaction is obtained. At the end of
* the induction period, observable ignition occurs, as exhibited
by an exponentially increasing temperaturc and accompanying
rapid depletion of reactant concentrations.

The induction period ends, and the heat-release period
begins, when a sharply defined change in temperature and
molur cencentrations oceurs. In this regime the full chemica
mechanism is active, with very strong temperature coupling
through the enthalpy conservation equation. The heat-release

period ends after concentrations of the chain-carrying
intermediates (such as O, OH, H) have reached their peak
values, and all species have begun to approach their chemically
equilibrated concentrations.

The equilibration regime is characterized by the monotonic,
asymptotic approach of all species concentrations and of the
temperature toward their chemical equilibrium values. During
equilibration both Q; and D; are large numbers, but with a
small difference. The equilibration process does not have a
clearly defined termination, because of the asymptotic nature
of the approach to the equilibrium state. However, since the
equilibrium state can be computed a priori by an efficient Gibbs
function-minimization scheme (refs. 7 and 14), the end of the
equilibration period can be defined as the time at which the
values of all thermochemical variables are within (say) I
percent of their equilibrium values.

Statement of the Computational Problem

Equations (1) to (12) are to be solved approximately in a
stepwise fashion by constructing a sequence of approximate
solutions on the point set £, € [0,Af] starting with the initial
conditions {0}y, Ty, and P. The computational mesh {h,} is
not given; its construction is part of the task (ref. 15).

The problem is to find the optimal computational method,
that is, a numerical integration algorithm and an appropriate
scheme for controlling local truncation error (accuracy) and
determining an optimal set of time step intervals {#,}. The

numbers of steps per 1nterval [O,At] and the number of
computer operations (computational work) per step.
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Figure 1.—Variation of species mole fraction with time for constant-pressure (10.0 atm) combustion of stoichiometric methane (pyrolized to CO and
Hj) and air. Initial temperature, 1000 K; reaction mechanism includes 12 reactions and 11 species (ref. 12).
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Figure 2.—Variation of species mole fraction with time for constant-pressure
(2.0 atm) combustion of stoichiometric hydrogen and air. Initial temperature.
1500 K reaction mechanism includes 30 reactions and 15 species (ref. 13).

In principle, classical explicit integration algorithms, such
as the Runge-Kutta family, may work satisfactorily on some
part of the computational mesh. However, implicit algorithms
require less computational work for the same accuracy and
so are preferred. Explicit algorithms are not used at all, except
as predictors in a predictor-corrector formulation.

Implicit algorithms for stepwise approximate integration of
equation (1) may be written in component form (with the
species index subscript suppressed for clarity) as follows
(ref. 15):
U”Ql:I’Ilf|ﬂllf1./;li|+¢11 (l})
where 1 denotes the time level at which the approximate
solution is known, n + 1 denotes the advance time level at
which the solution ¢, ,, is sought, h, . is the step length
(tyo1 — 1. fuyy is the net production rate at 1,44, 8, 4, and
¥, are constants or algebraic coefficients characteristic of the
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particular algorithm chosen, and ¥, contains all the
previously computed information from time level #,. In the
notation of equation (13) an explicit algorithm would be
represented trivially as 0,4, = ¥,

Some of the choices that have to be made in selecting the
best implicit methods are whether to converge the corrector
equations by successive substitution (Jacobi, Gauss-Seidel, or
Jacobi-Newton iteration (ref. 16)) or by simultancous
substitution (Newton-Raphson iteration), and if by Newton-
Raphson iteration, whether to choose pivotal Gauss
elimination, LU-decomposition (ref. 17), or Hessenberg
decomposition (refs. 18 and 19) to carry out the work-intensive
matrix operations required. The local truncation error must
be estimated in order to assure acceptable accuracy, which
can be done by the full-step, half-step method, from the
difference between predictor and corrector solutions, or from
the difference between two different-order correctors
(ref. 20). If step size is to be controlled by both accuracy and
iterative convergence efficiency, the convergence rate must
also be monitored. All these choices are interdependent and
highly problem-dependent, so that a single. best, all-purpose
computational method for all problems of the form of
equation (1) does not exist yct.

Stiffness Problem

An efficient, automatic computational method must be able
to identify stiffness of the governing system of differential
equations and then be able to invoke the appropriate numerical
integration algorithm (refs. 18, 19 and 21). Unfortunately
numerical and computational specialists do not agree on a
single technical definition of the term “*stiff,”” as applied to
systems of lincar or nonlincar ODE’s (ref. 22). However,
Lambert's (ref. 15) and Shampine’s (ref. 22) definitions arce
pragmatic, self-consistent, and understandable:

(A system of ODE’s is stift if the exact solutions are stable
(for a specific set of initial conditions) in the forward direction,
but the exact solutions in the reverse direction (decreasing time
or axial dircction) are unstable. Any physical system which
has a strong directional drive toward some torm of equilibrium
state is described by stitf ODE’s. Typically the exact solutions
of a stift system of ODE’s exhibit the general appearance of
decaying exponential functions.

(2) A problem (defined as the ODE’s, a set of initial
conditions, and a stepwise numerical method for their
approximate solution) is computationally sttt it in the region
of interest the computational step size must be reduced severely
trom that value which would yicld the required accuracy.

The most important and useful distinction between the two
definitions s that stiffness is an inherent attribute of the
physical system of interest (and, by definition., of its associated
system of ODE’s), whercas computational stiffness is just a
symptom of having chosen an inappropriate or suboptimal
scheme for the approximate numerical solution of the ODE’s.




If the physical system of interest does not exhibit strongly
directional, stable behavior—that is, if its exact solutions are
weakly stable or unstable—then the system and its describing
ODE’s are nonstiff. Systems with oscillatory exact solutions
may alternate between regimes of stiff and nonstiff behavior.

It can be seen by inspection of figures 1 and 2 that during
equilibration the ODE'’s are stable, and the chemical species
and temperature asymptotically approach their equilibrium
states. Therefore, using the definitions of stiffness, we can
classify the equilibration regime as stiff. During induction,
however, many species and the temperature have positive time
constants, which indicate unstable ODE’s. The induction
regime is, therefore, nonstiff. Since the heat-release regime
is not clearly stiff, it must be regarded as nonstiff as well.

' Nonstiff Integration Algorithms

In the nonstiff regime, the differential equations are unstable
(or at best weakly stable), so that small step sizes are required
regardless of the accuracy of the integration algorithm.
Therefore, since a limited convergence radius is not the
restricting consideration, the computationally inexpensive,
point-iteration methods are preferred to matrix iterative
methods.

With the decomposition of f; into gross production and
destruction terms of equation (6), Jacobi-Newton iteration
(ref. 16) should be used to achieve the fastest convergence
for equation (13):

n+15n+1fn+l - 0515-3-1 + ‘Ln

AoitHY = (14)
1 +hn+IBn+an+1
and
o = ol + AclHY (15)

where Ag is the iterative correction, and (s) denotes the
iteration counter. Equations (14) and (15) are iterated until
converged, that is, until the absolute value of Ac is less than
some suitably small criterion e.

The loss coefficients L; in equation (14) approximate the
diagonal terms of the full Jacobian matrix, equation (17). They
are used in equation (14) only to accelerate convergence, so
that they need not be reevaluated at each iteration.

The step size h,,, is controlled so that the rate of
convergence (defined as Ac{’;""/Ac ) )) is about 0.5, which,
experience shows, optimizes the number of steps in the
prescribed interval and the number of iterations per step
(refs. 18 and 19). Gear’s nonstiff method (ref. 23) can be
employed to select automatically the lowest order Adams
predictor-corrector formula which will satisfy a prescribed
level of accuracy, as determined by an estimate of the local
truncation error. The packaged ODE solver code EPISODE
(ref. 24), with method flag MF = 13, incorporates the nonstiff
method recommended.

Automatic Detection of Stiffness

If the nonstiff integration algorithm cannot achieve the
desired rate of iterative convergence, the problem has become
computationally stiff, and a change to a stiff integration
algorithm must be considered in order to maintain optimal
computational efficiency (refs. 21 and 22). However, it is not
clear in practice where the optimal changeover point occurs.
In the context of the present problem, a reliable criterion is
available from the problem physics: when two or more species
are in quasi-steady-state (defined for this purpose as occurring
when the absolute difference between Q; and D; of egs. (6)
to (8) is less than one thousand times their sum), the system
is considered to be computationally stiff, and the use of a stiff
integration algorithm is indicated.

Stiff Integration Algorithms

In stiff regimes, the large step sizes admitted by accuracy
requirements are too great for convergence of the best point-
iterative schemes. Therefore, it is necessary to use some form
of Newton iteration to converge equation (13), which in turn
requires the evaluation of an exact or approximate Jacobian
matrix and the iterative solution of matrix systems of
dimensions NS by NS; the latter requires an enormous increase
in computational work per step (ref. 15).

A suitably modified form of equation (13) for computing
the Newton-iterative corrections may be written in vector form
as

(I - hn + 16n+ IJ> Agr(zsﬁ.ll)

Ihn+16n+l,ﬂl§31 - n+l + l//n (16)
where I is the diagonal unit matrix and J is the Jacobian matrix,
defined in component form by

o, e ) , )
J,-ksa——( o) ; ( au-) (Rjozkj—R_jakj) (17)

and where the corrections Ag; are to be used as before (see
the Section Nonstiff Integration Algorithms). In equation (17)
the partial derivatives with respect to the density are assumed
negligible in comparison with the other terms.

A key point in the solution strategy is that the notation J
for the Jacobian matrix in equation (16) purposely omits
reference to either the time level or the iteration counter. The
idea is to use an old Jacobian as long as possible, to avoid
recalculation of J by equation (17), and more significantly,
to avoid repeated decomposition of the J-matrix. The iterative
convergence rate is monitored as in the nonstiff case, but
inefficient convergence rates (>0.5) are taken as a signal to
reevaluate J and to decompose the new matrix. When this
iterative convergence is used in connection with the family
of variable-order, backward difference integration algorithms
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(Gear’s stiff method (ref. 23)), a very efficient stiff method
results.

Nonphysical Initial Conditions

In a single-point calculation, such as the shock-initiated
combustion problems illustrated in figures 1 and 2, the initial
mole numbers of reaction intermediates and of products are
usually assumed to be equal to zero, rather than the very small
but nonzero initial values which actually exist. In
multidimensional reacting flow calculations, initial mole
numbers are determined by a weighted averaging of mole
numbers over adjacent grid nodes or from spatially adjacent
fluid elements, depending on whether an Eulerian or a
Lagrangian description of the flow is used. Since the properties
associated with some neighboring nodes or fluid elements may
represent chemically and thermally hot (ignited and burning)
states, while others may represent cold (unignited) reactant
states, the warm mixture properties resulting from the weighted
averaging may be physically meaningless.

When this happens, a numerical imbalance occurs, for one
or more species, between the production and destruction terms
in equation (6), Q; and D;, respectively. A spuriously high
positive or negative species net production rate f; is the result.
The effect on any numerical integration algorithm is that
unnaturally small step sizes are required to resolve the very
large predicted change in mole numbers duce to the
nonphysically high species reaction rates, which results in
excessive computational work.

The solution is to **filter’” the initial conditions in order to
provide physically meaningtul initial mole numbers and net
species production rates. One method that accomplishes this
filtering is as follows:

(1) Choose an initial (i.c., first) time step A, =[max(L,)|

(2) Calculate a predictor set of mole numbers by using the
explicit **filtered Euler’™ approximation (ref. 25),

1

Oy _ .
g, =0+ 1’1/,.0[

I —exp(— L"Uhl)J (18)

Lioh,

where the superseript (0) indicates the result of the predictor
step
(3) Tterate an implicit Euler corrector to convergence:

":,\l* D= g, + h,f,(.‘]) (1

The predictor equation (18) damps the bad initial rates, and
the corrector equation (19), being fully implicit, has no
memory of the initial rates at all. The filtered set of mole
numbers o, is now ready for the main integration routine.

Evaluation of Thermochemical and
Kinetic Rate Data

A preprocessor such as CREK (ref. 26) or CHEMKIN
(ref. 27) is used to read the kinetic mechanism, the kinetic
rate data constants required in equation (3), and the fifth-order
polynomial fit coefficients required to evaluate the
thermochemical properties required for the calculations in
equations (2) to (12). If the reverse rate data A_, B,]. and
T_; of equation (4) are not prescribed, the reverse rate
constants must be calculated from the following detailed-
balance relation:

NS o
N
exXp T O (20)
2 ( ! />R1

NS .
. (u,\/ )

ko =k (RT)™

This calculation requires repeated evaluation of the molar
specific enthalpy A, and the molar specific 1-atm entropy ;'
in order to evaluate the jth species 1-atm specific Gibbs
function g/’

g'=h =Ty (2

It the loss in accuracy is acceptable, the reverse rate
constants can be precalculated over a range of expected
temperatures and obtained by a least-squares it to the reverse
rate constants as given by cquation (20) (ref. 26).

Another important technique is to avoid unnecessary
evaluation of thermochemical and rate data by locally
lincarizing the rate constants and thermochemical data, so that,
during the course of iterative convergence of equation (14)
or (17), the thermochemical and kinetic rate data are not
reevaluated while the current temperature is within a local
window (T, T + |AT]). The size of this window is controlled
so that resulting errors in the approximate solution observe
the prescribed error bound ¢ on local truncation error in the
following way:

eT
AT = ——— (22)

T T
max |- + B;; — + B_;
ioT o :

Use of this control strategy has been shown to reduce the
total computational work significantly (refs. 13 and 28).
Prospects for Further Improvements

No code presently exists which combines all of the speed-
enhancing techniques discussed in preceding sections. Because




of the often subtle interactions between parts of an integrated
code, a certain amount of trial-and-error combination of
techniques seems to be an inevitable requirement for further
improvement. In this section prospects for further speed
reductions in each of the three physical regimes—induction,
heat-release, and equilibration—are considered separately, and
finally a development path toward the ultimate integrated code
is suggested.

Induction Regime

The increasing-exponential behavior of reactive species
apparent in figures 1 and 2 suggests the use of exponential
functions (or their rational-function or Pade approximants
(ref. 29)) as interpolants, rather than the classical polynomial-
interpolant methods, in determining the 3’s and s in equation
(13). The exponential-fitted algorithms (refs. 29 to 32) do,
in fact, interpolate the reactive species with more accuracy
for the same computational work than the Adams methods;
however, the lack of an efficient step-size control strategy
cancels much of the advantage (refs. 13, 28, 31, and 32).

Other methods have been suggested to save computational
work in the induction regime, including formally replacing
time with temperature as the independent variable and directly
calculating the induction time (ref. 12) or formally replacing
time with the mole number o; of one of the reactive species
as the independent variable and integrating the governing
equations in the phase plane. Neither of these two proposals
has heen demaonstrated to be computationally efficient.

Heat-Release Regime

There does not appear to be any obvious way to increase
significantly the speed of computation in this intermediate
regime, which is neither clearly stiff nor nonstiff. The
exponential-fitted methods offer no apparent advantage over
polynomial-interpolant algorithms in this regime, because of
the pathological variations of species mole numbers with time
(extrema and inflections). Perhaps a high-order, single-step
Obreschkoff (spline) method (ref. 33) would give performance
superior to that of the typically multistep, low-order stiff or
nonstiff algorithms featured in Gear’s methods (refs. 23, 24,
and 34). The implicit or semi-implicit Runge-Kutta methods,
known also as Rosenbrock methods, may offer some special
advantage in this regime (refs. 35 and 36).

Equilibration Regime

Because exponential functions with negative time constants
exhibit asymptotic-decay behavior, and even high-order
polynomials do not, the exponential-interpolant algorithms
appear to be inherently more accurate than polynomial-
interpolant algorithms of comparable computational work per
step. Brandon (refs. 31 and 32) claims approximately sixth-

to eighth-order accuracy for the same work as that of a second-
order Adams or backward-difference algorithm. The
developmental batch kinetics code CREK 1D (refs. 37 and 38),
which uses the exponential-fitted trapezoidal rule integration
algorithm (refs. 29 to 32), has been demonstrated to give
comparable performance for accuracy equal to that of the best
Gear’s method code available, LSODE (refs. 13, 28, and 39).
However, because of the inefficient step-size control strategy
currently used in CREK1D, LSODE is, at present, the better
method of the two for use in the equilibration regime.

Other methods proposed to reduce the computational work
associated with the matrix operations required for Newton
iteration include using perturbed functional iteration (ref. 40)
and reducing the size of the computational matrix by using
the kinetic rate data for only three-body reactions as constraints
on the sum of the mole numbers o, in a constrained
equilibrium method (ref. 41). The far more restrictive, but
time-honored, assumption of quasi-steady-state (QSS) behavior
for reactive species is not recommended, as the time saved
by a modest reduction in size of the matrix is largely offset
by the difficulties in solving the mixed, differential-algebraic
system of equations; in any case, the QSS assumnption is not
element-preserving, so that periodic adjustments are required
to restore conservation of elemental mass (ref. 42).

Toward the Ultimate Code

The ultimate batch kinetics code, when called from a reactive
flow field modeling code, would automatically (i.e., in a black-
box manner) perform the following actions:

(1) Filter the initial conditions

(2) Identify three physical and computational regimes: (a)
induction (unstable nonstiff), (b) heat-release (mixed stiff and
nonstiff), and (c) equilibration (stable stiff)

(3) Cali the appropriate integration mcthod (algorithm plus
step-size control logic)

(4) Reevaluate thermochemical and kinetic rate data only
as often as necessary to observe prescribed error bounds

Ideally more than one integration method would be available
for each of the three regimes, depending on whether the user
elects a high, medium, or very low accuracy or computational
work. At the present time LSODE (ref. 34) offers the best
available method for all three regimes, but there is clearly room
for further improvement.

Concluding Remarks

The design of a very fast, automatic integration code for
homogeneous, gas-phase chemical kinetics depends on
understanding the physical and numerical sources of
computational inefficiency. Some specific techniques for



overcoming three of the major sources of inefficiency—
stiffness and computational stiffness, nonphysical initial
conditions, and unnecessary evaluation of thermochemical and
kinetic properties—have been recommended.

The ultimate black-box code will automatically filter the
initial conditions, select the best integration method for the
physical and computational regime identified, and avoid
unnecessary calculation of thermochemical properties.

Progress remains to be made in the areas of further reducing
or eliminating altogether the burdensome work of matrix
calculations and in devising very low accuracy or approximate
integration methods. However, with the sources of present
inefficiencies now reasonably well understood, it is clear that
further improvements in computational efficiency are possible.

Lewis Rescarch Center
National Aeronautics and Space Administration
Cleveland, Ohio, February 11, 1986
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